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STRESSES IN AN ELASTIC BODY UNDER NONLINEAR ANTIPLANE DEFORMATION

UDC 539.3V. D. Bondar’

The stress field in a cylindrical elastic body under antiplane deformation and certain constraints
imposed on volume and surface forces is studied in a nonlinear formulation in actual-state variables.
A boundary-value problem for independent stress components is formulated in Cartesian and complex
variables, sufficient ellipticity conditions for this problem are indicated, and constraints on surface
loading are imposed. Analytical solutions are given for linear and weak nonlinear elastic potentials.
Similarity to a plane subsonic ideal-gas flow is established. An approximate method for the solution
of the problem is developed.

In the present paper, using the nonlinear theory of elasticity in actual-state variables, we consider the stressed
state of an elastic cylindrical body with a specified elastic potential under longitudinal antiplane deformation without
volume forces and with constant surface loading along the cylinder generatrix. Stresses can be determined from
the equations of equilibrium and stress compatibility in the volume of the body and from force conditions on its
surface.

In the actual-state Cartesian coordinate system x1, x2, x3 with the x3 axis parallel to the cylinder generatrix
(x3 is a longitudinal coordinate) and the x1 = x and x2 = y axes in the plane of its middle cross section S with
boundary L (x and y are transverse coordinates), antiplane strain is described by the displacements u1 = u2 = 0
and u3 = w(x, y). In these variables, the strain measure is the Almansi tensor. In the case of antiplane deformation,
the components Ekl and invariants Ek of the tensor given by the formulas [1]

2Ekl = ∂kul + ∂luk − ∂kum∂lum,

E1 = Emm, 2E2 = EmmEnn − EmnEnm, E3 = det (Ekl)

(hereinafter, the subscript runs from 1 to 3, and summation is performed over repeating indices) are expressed in
terms of axial displacement:

2E11 = −
(∂w
∂x

)2

, 2E22 = −
(∂w
∂y

)2

, 2E33 = 0,
(1)

2E12 = −∂w
∂x

∂w

∂y
, 2E31 =

∂w

∂x
, 2E32 =

∂w

∂y
;

2E1 = −|∇w|2, 4E2 = −|∇w|2, E3 = 0. (2)

Hence, Ekl and Ek are functions of the transverse coordinates.
Generally, the equations of strain compatibility can be obtained by excluding displacements from the formulas

expressing strains in terms of these variables [2]. Eliminating displacements from relations (1), we obtain the
following compatibility equations for antiplane strain:

2E11 = −(2E31)2, 2E22 = −(2E32)2, 2E33 = 0, (3)

2E12 = −2E312E32,
∂2E32

∂x
− ∂2E31

∂y
= 0.
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System (3) consists of finite and differential equations. In the first four equations, the strain components are
expressed in terms of two of them (E31 and E32) by nonlinear formulas, and the last equation is a linear differential
equation for the independent components. Strain invariants (2) are nonpositive, expressed in terms of the invariant
E1 (2E2 = E1 and E3 = 0), and satisfy the incompressibility condition [1] 2E1 − 4E2 + 8E3 = 0. Therefore, under
antiplane deformation, the material behaves as an incompressible one.

The mechanical behavior of an incompressible elastic body in actual-state variables is defined by a modified
Murnaghan’s law [1, 3], which relates Cauchy stresses Pkl with Almansi strains:

Pkl = −q∗δkl + (δkm − 2Ekm)
∂U

∂Elm
.

Here q∗ is the Lagrangian factor, δkl is the Kronecker delta, and U is the elastic potential. For a homogeneous
isotropic material, the elastic potential is a function of basis strain invariants. In the case considered, by virtue of
the characteristics of the invariants, this potential depends only on the first invariant: U = U(E1). With allowance
for this property of the potential and the relations

E1 = Elmδml,
∂E1

∂Elm
= δml,

∂U(E1)
∂Elm

= U ′(E1)δml,

Murnaghan’s law for antiplane deformation is written as the following quasilinear dependence of stresses on strains:

Pkl = −qδkl − 2U ′(E1)Ekl (4)

(q = q∗ − U ′ is the hydrostatic pressure).
Inverting dependences (4), we obtain the strain relations

2Ekl = −(Pkl + qδkl)/U ′. (5)

The derivative of the elastic potential contained in (5) can be expressed in terms of stresses. Indeed, eliminating
the invariant E1 from the relations

2E1 = 2Emm = −(2E31)2 − (2E32)2 = −(P 2
31 + P 2

32)/U ′2, U ′ = T (2E1) (6)

[following from formulas (3) and (5)], we have the desired dependence in implicit form:

U ′ = T (−R2/U ′2), R2 = P 2
31 + P 2

32. (7)

In particular, for the quadratic Rivlin–Sounders potential (coinciding with the Mooney potential in the linear
case)

U(E1) = aE2
1 − 2bE1 (a > 0, b > 0, E1 < 0), (8)

which describes large elastic strains of rubber-like materials with reasonable accuracy [4, 5], the dependence U ′(R2)
is given by the solution of the cubic equation

U ′3 + 2bU ′2 + aR2 = 0. (9)

The substitution U ′ = V − 2b/3 reduces this equation to an incomplete equation

V 3 − (4b2/3)V +m = 0 (10)

with the coefficients m = aR2 + 16b3/27 satisfying the inequality

Q = (−4b2/9)3 + (m/2)2 = (8ab3/27)R2 + (a2/4)R4 > 0.

Equation (10) has only one real solution [6]

V = I+(R2) + I−(R2) (I± = 3
√
−m/2±

√
Q).

Consequently, the solution of Eq. (9) has the form

U ′(R2) = I+(R2) + I−(R2)− 2b/3. (11)

The quantities m, Q, and R2 are determined above. Thus, strains are expressed by the inverse Murnaghan’s law in
terms of stress and pressure.

903



Substitution of strains (5) into equalities (3) yields the stress compatibility equations

P11 = −q + P 2
31/U

′, P22 = −q + P 2
32/U

′, P33 = −q, P12 = P31P32/U
′,

(12)
∂

∂x

P32

U ′
− ∂

∂y

P31

U ′
= 0,

where U ′ is determined in (11). The first four of these equations represent stresses in terms of pressure and the
stresses P31 and P32, and the last equation is a nonlinear differential equation for the independent stresses.

We assume that a specified surface (with the external normal nm) of the cylinder is loaded with load pk,
which is represented in terms of stresses by the formula pk = Pkmnm. On the lateral surface of the cylinder S∗, the
normal components are equal to (nm) = (n1(x, y), n2(x, y), 0), and hence, with allowance for (12), the lateral load
is written as

p1 = −qn1 + (P31/U
′)P3mnm, p2 = −qn2 + (P32/U

′)P3mnm, p3 = P3mnm. (13)

At the cylinder butt ends S± (the superscript plus corresponds to the upper butt end and the superscript minus
corresponds to the lower butt end), the normal components are constant [(n±m) = (0, 0,±1)] and the load is

p±1 = ±P31, p±2 = ±P32, p±3 = ±P33 = ∓q. (14)

It follows from (13) and (14) that if the surface load does not depend on x3, the pressure on the cylinder surface
does not depend on x3 as well. Next, we assume that the pressure does not depend on this coordinate over the entire
volume of the cylinder: q = q(x, y). Consequently, in the cylinder, the stresses (4) are functions of the transverse
coordinates: Pkl = Pkl(x, y).

In the absence of volume forces, taking into account the stress relations (12) and the expressions q = q(x, y)
and Pkl = Pkl(x, y), we write the equilibrium equations ∂Pkm/∂xm = 0 in the form

− ∂q
∂x

+
P31

U ′

(∂P31

∂x
+
∂P32

∂y

)
+ U ′

(P31

U ′
∂

∂x

P31

U ′
+
P32

U ′
∂

∂y

P31

U ′

)
= 0,

−∂q
∂y

+
P32

U ′

(∂P31

∂x
+
∂P32

∂y

)
+ U ′

(P32

U ′
∂

∂y

P32

U ′
+
P31

U ′
∂

∂x

P32

U ′

)
= 0;

(15)

∂P31

∂x
+
∂P32

∂y
= 0. (16)

Equations (15) define pressure and Eq. (16) [together with the last equation in (12)] defines the independent stresses.
Indeed, Eqs. (15) [with allowance for Eqs. (12) and (16)] and the notation for the sum of squares of the independent
stresses (7) become

− ∂q
∂x

+ U ′
∂

∂x

R2

2U ′2
= 0, −∂q

∂y
+ U ′

∂

∂y

R2

2U ′2
= 0.

Taking into account the first relation in (6) and equalities

∂

∂xk

R2

2U ′2
= −∂E1

∂xk
, U ′

∂

∂xk

R2

2U ′2
= −U ′ ∂E1

∂xk
= − ∂U

∂xk
(k = 1, 2),

we write these equations as ∂(q + U)/∂x = 0 and ∂(q + U)/∂y = 0. After integration, they define the hydrostatic
pressure via the elastic potential:

q = h− U (17)

(h is an integration constant).
The axial components F±3 of the resulting butt end loads (14) depend linearly on h:

F±3 =
∫
S

p±3 dS = ∓
∫
S

q dS = ∓
(
hS −

∫
S

U dS
)
.

Hence, this variable can be expressed in terms of the axial load. In particular, in the absence of the axial load, the
constant h is equal to an average value of the potential in the cross section of the cylinder

h =
1
S

(∫
S

U dS ∓ F±3

) (
for F±3 = 0, h =

1
S

∫
S

U dS
)
. (18)
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In the last case, according to Eqs. (17) and (18), the hydrostatic pressure coincides with the deviation of the elastic
potential from its average value.

At the boundary L of the cylinder cross section, the stresses P31 and P32 are expressed in terms of load
by the nonlinear equations (13). For further consideration, we introduce linear combinations gn and gt of stresses
(whose coefficients are the components n1 and n2 of the normal and the components t1 = −n2 and t2 = n1 of the
tangent) that are biuniquely related to the stresses P31 and P32:

gn = P31n1 + P32n2, gt = P31t1 + P32t2 = −P31n2 + P32n1,
(19)

P31 = gnn1 − gtn2, P32 = gnn2 + gtn1, R2 = P 2
31 + P 2

32 = g2
t + g2

n on L.

Determining gn and gt from (13), we then determine stresses and impose constraints on the load.
With allowance for formulas (13), (17), and (19) and the values (tm) = (−n2, n1, 0), (n′m) = (−n1,−n2, 0),

and (bm) = (0, 0, 1) of the unit vectors of the natural contour axes, the natural components pt, pn′ , and pb (tangent,
normal, and binormal) of the contour load vector are equal to

pt = pmtm = gngt/U
′, −pn′ = pn = pmnm = U − h+ g2

n/U
′, pb = pmbm = gn. (20)

In (20), the last equality defines the quantity gn:

gn = pb; (21)

the first two equalities define the quantity gt. Indeed, substituting the quantity R2 = g2
n + g2

t into Eq. (9) considered
at the boundary and the elastic potential (8) expressed in terms of its derivative U = (U ′2 − 4b2)/(4a) into the
second equation in (20), we obtain the following equations for U ′:

U ′3 + 2bU ′2 + a(g2
n + g2

t ) = 0, U ′3 − 4BU ′ + 4ag2
n = 0 [B = b2 + a(h+ pn)].

Substituting the expressions gn = pb and U ′ = pbgt/pt from the first and third equalities in (20) into the above
equations, we obtain the cubic equations for gt:

p3
bg

3
t +Aptg

2
t + ap2

bp
3
t = 0, p2

bg
3
t − 4Bp2

t gt + 4ap3
tpb = 0 (A = 2bp2

b + ap2
t ).

The first equation has the following unique real solution for arbitrary parameters [6]:

gt =
pt
pb

(
3

√
−d

2
+
√
M + 3

√
−d

2
−
√
M − A

3p2
b

) (
d = ap2

b +
2A3

27p6
b

M =
a2p4

b

4
+
aA3

27p4
b

)
; (22)

the second equation has the unique real solution

gt =
pt
pb

(
3
√
−2ap2

b + 2
√
N + 3

√
−2ap2

b − 2
√
N
)

(23)

for the parameters satisfying the inequality

N = a2p4
b −

16
27
B3 > 0.

This inequality (23) and the condition matching Eqs. (22) and (23) for the quantity gt

3
√
−d/2 +

√
M + 3

√
−d/2−

√
M −A/(3p2

b) = 3
√
−2ap2

b + 2
√
N + 3

√
−2ap2

b − 2
√
N

impose constraints on the surface load that ensure antiplane deformation of the cylinder. Thus, the boundary values
of the independent stresses are given by formulas (19) in which the quantities gt and gn are defined by Eqs. (21)
and (22) for a specified load satisfying the constraints.

The differential equations (12) and (16) [U ′ is expressed in terms of stresses by formula (11)] and boundary
conditions (19) define the following nonlinear boundary-value problem for the independent Cartesian stresses:

∂

∂x

P32

U ′
− ∂

∂y

P31

U ′
= 0,

∂P31

∂x
+
∂P32

∂y
= 0,

(24)
P31 = gnn1 − gtn2, P32 = gnn2 + gtn1 on L.

Let us write the equations in expanded form and establish the ellipticity conditions for this system.
If we differentiate the derivative U ′(E1) with respect to the coordinates and allow for the expression of the

invariant E1 = −R2/(2U ′2), the gradients ∂U ′/∂x and ∂U ′/∂y are written as

905



∂U ′

∂x
=

U ′U ′′

2(R2U ′′ − U ′3)
∂

∂x
(P 2

31 + P 2
32),

∂U ′

∂y
=

U ′U ′′

2(R2U ′′ − U ′3)
∂

∂y
(P 2

31 + P 2
32).

With allowance for the above relations, Eqs. (24) become

H1 = U ′P31P32

(∂P31

∂x
− ∂P32

∂y

)
+ (U ′′P 2

32 − U ′3)
∂P31

∂y
− (U ′′P 2

31 − U ′3)
∂P32

∂x
= 0,

(25)

H2 =
∂P31

∂x
+
∂P32

∂y
= 0.

Let us consider the characteristic determinant D of this system [7]. Denoting the desired quantities by w1 = P31

and w2 = P32, we write the determinant in the form

D = det (Akl), Akl =
∂Hk

∂(∂wl/∂xm)
vm, A21 = v1, A22 = v2,

A11 = U ′′w1w2v1 + (U ′′w2
2 − U ′3)v2, A12 = (−U ′′w2

1 + U ′3)v1 − U ′′w1w2v2.

The value of this determinant is

D = A11A22 −A21A12 = −U ′3(v2
1 + v2

2) + U ′′(w1v1 + w2v2)2.

From this it follows that

D > 0 for U ′ < 0, U ′′ > 0, D < 0 for U ′ > 0, U ′′ 6 0. (26)

If the elastic potential satisfies conditions (26) (the first or the second condition), the characteristic equation
D = 0 has no real roots. Therefore, the nonlinear system (25) is elliptic for any solution. Thus, inequalities (26)
are sufficient conditions for ellipticity of the equations of antiplane deformation of an elastic material.

For the quadratic Rivlin–Sounders elastic potential (8), the derivatives have the values U ′ = 2aE1 − 2b < 0
and U ′′ = 2a > 0 (a > 0, b > 0, and E1 < 0); therefore, for this potential, the ellipticity conditions (26) are
satisfied.

The boundary-value problem (24) can be written in complex form. Let us convert from the Cartesian
coordinates xm to the complex coordinates zk:

z1 = z = x+ iy, z2 = z̄ = x− iy, z3 = x3,

2
∂

∂z
=

∂

∂x
− i ∂

∂y
, 2

∂

∂z̄
=

∂

∂x
+ i

∂

∂y
,

∂

∂z3
=

∂

∂x3
.

The complex components of the normal (nk) and the stresses (P kl) are expressed in terms of the Cartesian
components of the corresponding quantities by the transformation formulas nk = nm ∂z

k/∂xm and P kl =
Pms (∂zk/∂xm)(∂zl/∂xs) in the following form [8–10]:

n1 = n̄2 = n1 + in2, n3 = n3, P 11 = P̄ 22 = P11 − P22 + 2iP12, (27)

P 12 = P11 + P22, P 31 = P̄ 32 = P31 + iP32, P 33 = P33.

At the points of the contour L near the normal to the lateral surface of the cylinder, the third component
is zero, and the first and second components are expressed in terms of the Cartesian and complex equations of the
contour L [x = x(s), y = y(s) and z = z(s), z̄ = z̄(s) (s is an arc of the contour)] by the formulas n1 = dy/ds and
n2 = −dx/ds; n1 = n̄2 = −i dz/ds. By virtue of (7), (12), and (17), the complex stresses (27) are expressed in
terms of the component P 31:

P 11 = P̄ 22 = (P 31)2/U ′(R2), P 12 = 2(U(R2)− h) +R2/U ′(R2),
(28)

P 33 = U(R2)− h, P 32 = P̄ 31, R2 = P 31P̄ 31.

In the complex variables, the nonlinear boundary-value problem (24) for stresses has the form

∂

∂z

P 31

U ′
− ∂

∂z̄

P̄ 31

U ′
= 0,

∂P 31

∂z
+
∂P̄ 31

∂z̄
= 0, P 31 dz̄

ds

∣∣∣
L

= gt − ign, (29)

where the dependence U ′ = U ′(R2) (R2 = P 31P̄ 31) is given by (11).
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In the case of a linear elastic potential [a = 0 in (8)], its derivative is constant: U ′ = −2b = const. By virtue
of this property, problem (29) becomes linear (i.e., coinciding with the corresponding problem of linear elasticity):

∂P 31

∂z
− ∂P̄ 31

∂z̄
= 0,

∂P 31

∂z
+
∂P̄ 31

∂z̄
= 0, P 31 dz̄

ds

∣∣∣
L

= gt − ign.

A consequence of these equations is the equation ∂P 31/∂z = 0. After integration, it defines the complex
stress in terms of an arbitrary function ϕ̄′(z̄) (complex potential). Substitution of the stress relation into the
boundary condition yields the following boundary-value problem for the potential:

P 31 = ϕ̄′(z̄), ϕ(z)
∣∣∣
L

= g(s) +G, g(s) =

s∫
0

(gt + ign) ds, G = const. (30)

If S is a simply connected region (finite or infinite) bounded by a simple smooth contour L in the plane z,
it can be conformally mapped onto a unit circle K with circumference C in a plane ζ by means of a holomorphic
function z = ω(ζ) [ω′(ζ) 6= 0]. Upon mapping, the complex potential and its derivative take values of ϕ(z) = ϕ(ζ)
and ϕ′(z) = ϕ′(ζ)/ω′(ζ), which, according to (30), allows us to express the stress in terms of both the potential
and the mapping function and write the following boundary-value problem for the transformed potential at the
boundary of the unit circle (without loss of generality assuming that G = 0):

P 31 = ϕ̄′(ζ̄)/ω̄′(ζ̄), ϕ(σ) = g(σ), ζ = reiθ ∈ K, σ = eiθ ∈ C. (31)

For the quadratic elastic potential (8) in the case of weak nonlinearity [where the coefficient of the quadratic
term is small compared to the coefficient of the linear term, i.e., c = a/(2b) � 1], one obtains an approximate
analytical solution of problem (29). In a linear approximation of the small parameter, the quantities considered can
be written as

P 31 = P 31
0 + cP 31

1 , U ′ = U ′0 + cU ′1, gt = gt0 + cgt1, gn = gn0 + cgn1,
(32)

R2 = (R2)0 + c(R2)1, U = U0 + cU1,

where, with allowance for (9), (21), (22), and (28), we have

U ′0 = −2b, U ′1 = −(R2)0/(2b), (R2)0 = P 31
0 P̄ 31

0 , (R2)1 = P 31
0 P̄ 31

1 + P 31
1 P̄ 31

0 ,

gt0 = −2bpt/pb, gt1 = −pt(4b2p2
t + p4

b)/(2bp
3
b), gn0 = pb, gn1 = 0, (33)

U0 = (R2)0/(4b), U1 = (R2)0/(32b3).

Substituting quantities (32) into relations (29) and equating the coefficients at equal powers of the parameter
on both sides, we obtain linear boundary-value problems for the zero and first stress components:

∂P 31
0

∂z
− ∂P̄ 31

0

∂z̄
= 0,

∂P 31
0

∂z
+
∂P̄ 31

0

∂z̄
= 0, P 31

0

dz̄

ds

∣∣∣
L

= gt0 − ign0; (34)

∂P 31
1

∂z
− ∂P̄ 31

1

∂z̄
+

3
4b2
[
(P̄ 31

0 )2 ∂P
31
0

∂z̄
− (P 31

0 )2 ∂P̄
31
0

∂z

]
= 0,

(35)
∂P 31

1

∂z
+
∂P̄ 31

1

∂z̄
= 0, P 31

1

dz̄

ds

∣∣∣
L

= gt1 − ign1.

Problem (34) for the zero stress component coincides with the corresponding problem of linear elasticity and
has a solution of the form of (30):

P 31
0 = ϕ̄′0(z̄), ϕ0(z)

∣∣∣
L

= g0(s) +G0, g0(s) =

s∫
0

(gt0 + ign0) ds, G0 = const.

From the stress P 31
0 , we find

3
4b2
[
(P̄ 31

0 )2 ∂P
31
0

∂z̄
− (P 31

0 )2 ∂P̄
31
0

∂z

]
=

3
4b2
[
ϕ′20 (z)ϕ̄′′0(z̄)− ϕ̄′20 (z̄)ϕ′′0(z)

]
= 2

∂f

∂z
,
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f(z, z̄) =
3

8b2
[
ϕ̄′′0(z̄)

∫
ϕ′20 (z) dz − ϕ̄′20 (z̄)ϕ′0(z)

]
,

after which problem (35) for the stress P 31
1 takes the form

∂P 31
1

∂z
− ∂P̄ 31

1

∂z̄
+ 2

∂f

∂z
= 0,

∂P 31
1

∂z
+
∂P̄ 31

1

∂z̄
= 0, P 31

1

dz̄

ds

∣∣∣
L

= gt1 − ign1.

Summation of the equations gives the equation ∂(P 31
1 +f)/∂z = 0, which after integration yields the representation

of the stress in terms of the complex potential ϕ̄′1(z̄). Substitution of the representation obtained into the boundary
condition yields the boundary-value problem for the potential:

P 31
1 = ϕ̄′1(z̄)− f(z, z̄), ϕ1(z)

∣∣∣
L

= g1(s) +G1, g1 =

s∫
0

(
gt1 + ign1 + f̄

dz

ds

)
ds,

where G1 = const.
Conformal mapping of the simply connected region S onto a unit circle allows us to represent the stress

components in terms of the transformed complex potentials and write the problems for the potentials on the unit
circle in a form similar to (31):

P 31
0 = ϕ̄′0(ζ̄)/ω̄′(ζ̄), ϕ0(σ) = g0(σ), P 31

1 = ϕ̄′1(ζ̄)/ω̄′(ζ̄)− f(ζ, ζ̄), ϕ1(σ) = g1(σ),
(36)

f(ζ, ζ̄) =
3

8b2
[ Φ̄′0(ζ̄)
ω̄′(ζ̄)

∫
ϕ′20 (ζ)
ω′(ζ)

dζ − ϕ̄′20 (ζ̄)
ω̄′2(ζ̄)

ϕ′0(ζ)
ω′(ζ)

]
, Φ0(ζ) =

ϕ′0(ζ)
ω′(ζ)

.

Thus, in a linear approximation of the small parameter, the stress (32), according to (36), is determined by
the potentials and the representation as

P 31 = P 31
0 + cP 31

1 = ϕ̄′0(ζ̄)/ω̄′(ζ̄) + c(ϕ̄′1(ζ̄)/ω̄′(ζ̄)− f(ζ, ζ̄)),

where the potentials are found from the corresponding boundary-value problems. As for the dependent stresses (28),
their linear approximations in the small parameter are expressed in terms of quantities (36) by the formulas

P 11 = P̄ 22 = − (P 31
0 )2

2b
+ c

P 31
0

8b3
(P 31

0 (R2)0 − 8b2P 31
1 ), P 32 = P̄ 31

0 + cP̄ 31
1 ,

P 12 = −2h+ c
3(R2)2

0 − 8b2(R2)1

16b3
, P 33 =

(R2)0

4b
− h+ c

(R2)2
0

32b3
,

where the quantities (R2)0 and (R2)1 were defined in (33).
Higher-order approximations of stresses can be similarly obtained if we develop quantities (32) as a series in

the small parameter.
Let us consider another approximate method of solving problem (24). In this problem, the first equation is

satisfied if the stresses (related to U ′) are expressed in terms of the axial displacement gradients w(x, y):

P31

U ′
= −∂w

∂x
,

P32

U ′
= −∂w

∂y
. (37)

The second equation is satisfied if the stresses are expressed in terms of the gradient of the stress function t(x, y):

P31 =
∂t

∂y
, P32 = − ∂t

∂x
. (38)

Elimination of stresses from equalities (37) and (38) yields the following nonlinear system of equations for the
functions t and w, in which U ′ is defined by relation (11) and the quantity R2 is defined by formulas (7) and (38):

∂w

∂y
=

1
U ′

∂t

∂x
,

∂w

∂x
= − 1

U ′
∂t

∂y
, U ′ = I+(R2) + I−(R2)− 2b

3
, R2 =

( ∂t
∂x

)2

+
( ∂t
∂y

)2

. (39)

These equations are similar to the following equations of steady-state plane vortex-free flow of an ideal gas with
subsonic speed [11]:

∂ψ

∂y
=

ρ

ρ0

∂ϕ

∂x
,

∂ψ

∂x
= − ρ

ρ0

∂ϕ

∂y
,

ρ

ρ0
=
(

1− v2

v2
max

)1/(χ−1)

, v2 =
(∂ϕ
∂x

)2

+
(∂ϕ
∂y

)2

(40)
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(χ is an adiabatic exponent). The quantities w, t, 1/U ′, and R2 in Eqs. (39) correspond to the stream function ψ,
the velocity potential ϕ, the relative density ρ/ρ0, and the square of the gas-flow rate v2 in Eqs. (40), respectively.
However, in contrast to the potentials ϕ and ψ of gas dynamics, which have no physical meaning, one of the elastic
potentials (potential w) has the meaning of axial displacement.

Similarly to (40), Eqs. (39) can be written as a linear system of equations for the same desired functions w
and t if the independent variables are appropriately chosen. In (39), nonlinearity is due to the quantity 1/U ′, which
depends only on R2. Therefore, we convert from the Cartesian coordinates x and y in the physical plane to the
variables R and J , which are polar coordinates in the plane of stresses P31 and P32: P31 = R cos J and P32 = R sin J .
Using relations (37) and (38), we consider the expression

dt+ iU ′ dw = (−P32 dx+ P31 dy) + iU ′
(
− P31

U ′
dx− P32

U ′
dy
)

= −i(P31 − iP32) dz = −iRe−iJ dz.

At R 6= 0, it follows that

dz = (ieiJ/R)(dt+ iU ′ dw). (41)

Assuming that t, w, and z are functions of R and J , from (41) we find

∂z

∂R
=
ieiJ

R

( ∂t
∂R

+ iU ′
∂w

∂R

)
,

∂z

∂J
=
ieiJ

R

( ∂t
∂J

+ iU ′
∂w

∂J

)
. (42)

Equating the mixed derivatives ∂2z/∂R∂J and ∂2z/∂J∂R in (42), we obtain

∂t

∂R
+ iU ′

∂w

∂R
=

i

R

( ∂t
∂J

+ iU ′
∂w

∂J

)
+
∂U ′

∂R

∂w

∂J
.

Separation of the real parts from the imaginary parts in this equality yields the following linear system of equations
for t and w:

∂t

∂J
= RU ′

∂w

∂R
,

∂w

∂J
=
(
R

d

dR

U ′

R

)−1 ∂t

∂R
. (43)

By differentiation, we exclude one of the functions (t or w) from Eqs. (43) and obtain a second-order differential
equation for the other function. In particular, the equation for axial displacement has the form

∂2w

∂R2
− 1
U ′

d

dR

(U ′
R

)∂2w

∂J2
+

1
RU ′

d(RU ′)
dR

∂w

∂R
= 0.

Equations (43) can be further simplified. The coefficients of the derivatives on the right sides of the equalities
differ only in sign if the function of U ′(R2) has the form of the radical

RU ′ = −
(
R

d

dR

U ′

R

)−1

, U ′ = −(1 + kR2)1/2, k = const. (44)

For weak nonlinearity [c = a/(2b)� 1], the dependence U ′(R2) can be written in the form of (44). Indeed,
approximation of this dependence by the linear function of the small parameter U ′ = m0(R2) + cm1(R2) allows the
coefficients to be found from the condition of identical satisfaction of Eq. (9) for quantity U ′ in this approximation:
m3

0 + 3cm2
0m1 + 2b(m2

0 + 2cm0m1) + 2cbR2 = 0. Setting the coefficients at the zeroth and first powers of the
parameter equal to zero in this equality, we obtain equations that define the desired quantities as m0 = −2b and
m1 = −R2/(2b). Thus, the quantity U ′ can be written as

U ′ ≈ m0 + cm1 = −2b(1 + cR2/(4b2)) ≈ −2b(1 + 2cR2/(4b2))1/2. (45)

Relations (44) and (45) coincide for 2b = 1 (c = a) and k = 2c/(4b2) = 2a, and dependence (45) has the
form

U ′ = −(1 + 2aR2)1/2, (46)

and Eqs. (43) have the form

∂t

∂J
= −R

√
1 + 2aR2

∂w

∂R
,

∂w

∂J
= R

√
1 + 2aR2

∂t

∂R
. (47)

Converting from the variable R to V and using the relationship between the derivatives with respect to these
variables
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V =
1
2

ln
√

1 + 2aR2 + 1√
1 + 2aR2 − 1

(
R =

1√
2a sinh V

)
, R

√
1 + 2aR2

∂

∂R
= − ∂

∂V
, (48)

we write Eqs. (47) for the functions t(V, J) and w(V, J) in the form of the Cauchy–Riemann equations [12]:

∂t

∂J
=
∂w

∂V
,

∂w

∂J
= − ∂t

∂V
. (49)

If we introduce the complex function v of the complex variables Z and Z̄:

v = w(Z, Z̄) + it(Z, Z̄), Z = J + iV, Z̄ = J − iV,
(50)

2
∂

∂Z
=

∂

∂J
− i ∂

∂V
, 2

∂

∂Z̄
=

∂

∂J
+ i

∂

∂V
,

Eqs. (49) can be written in complex form

2
∂v

∂Z
=
∂(w + it)

∂J
− i ∂(w + it)

∂V
=
∂w

∂J
+

∂t

∂V
+ i
( ∂t
∂J
− ∂w

∂V

)
= 0.

Integrating the last relation, we find v as an arbitrary function W̄ of the variable Z̄:

v = W̄ (Z̄). (51)

On the contour L with the equations x = x(s) and y = y(s), according to (24) and (46), the stresses
P31 = P31(s) and P32 = P32(s) and the derivative of the elastic potential U ′ = −

√
1 + 2a(P 2

31(s) + P 2
32(s)) are

determined. Therefore, Eqs. (37) [compatible by virtue of the first equality in (24)] on L define the displacement

w∗(s) = w0 +

s∫
0

P31x
′ + P32y

′√
1 + 2a(P 2

31 + P 2
32)

ds, (52)

where w0 is a specified constant. Specified contour stresses determine the quantities R =
√
P 2

31 + P 2
32 = R(s) and

J = arctan (P32/P31) = J(s) on L, and, in accordance with (48) and (50), they determine the quantities V = V (s)
and J = J(s) [Z = Z(s) and Z̄ = Z̄(s)]. Taking into account the representation of the displacement in terms of
the complex potential w = Re v = ReW and its value on the contour (52), we obtain the following boundary-value
problem for the potential:

ReW (Z)
∣∣∣
L

= w∗. (53)

The potential W (Z) found from (53) defines the function w(Z, Z̄) = (W (Z)+W̄ (Z̄))/2, which can be written
in terms of the variables z and z̄. Integrating equality (41) [after conversion to the variables Z and Z̄ with allowance
for (46), (48), and (49)], we find the relation

z − z0 =
√

2a
2

[ ∫
eiZW ′(Z) dZ +

∫
eiZ̄W̄ ′(Z̄) dZ̄

]
.

Adding the complex-conjugate equality to the above relation, we obtain the dependences z = z(Z, Z̄) and z̄ =
z̄(Z, Z̄). The Jacobian of this transformation calculated with allowance for relations (46)–(50) is nonzero, i.e.,

∂(z, z̄)
∂(Z, Z̄)

=
∂(z, z̄)
∂(R, J)

∂(R, J)
∂(V, J)

∂(V, J)
∂(Z, Z̄)

=
∂(z, z̄)
∂(R, J)

R

2i

√
1 + 2aR2 6= 0,

because, according to (42), (43), and (46), we have

∂(z, z̄)
∂(R, J)

=
2i
R3

[
R2(1 + 2aR2)

(∂w
∂R

)2

+
(∂w
∂J

)2]
6= 0.

Therefore, the transformation is reversible: Z = Z(z, z̄) and Z̄ = Z̄(z, z̄), i.e., there is correspondence between
the pairs of variables z, z̄ and Z, Z̄. By virtue of this correspondence, the function w(Z, Z̄) obtained can be
written as w(Z(z, z̄), Z̄(z, z̄)) = w(z, z̄). This function defines the displacement and, according to (37) and the
relation U ′ = −(1− 2a|∇w|2)−1/2, the stresses in the region S.
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